TETRAHEDRON:
ASYMMETRY

Pergamon TetrahedronAsymmetryl0 (1999) 225-228

Enantioselective synthesis Bfhydroxy carboxylic acids: direct
conversion of-oxocarboxylic acids to enantiomerically enriched
B-hydroxy carboxylic acids via neighboring group control

Zhe Wang?t Chunlin Zhao! Michael E. Pierce and Joseph M. Fortunak
DuPont Pharmaceuticals Company, Research & Development, Chambers Works, Deepwater, NJ 08023, USA

Received 2 December 1998; accepted 7 December 1998

Abstract

B-Oxocarboxylic acids can be reduced to the corresponflihgdroxy carboxylic acids employing DIP-Cl
as a reducing agent. THecarboxylic substituent exerts a remarkable neighboring group effect on the reduction.
The reaction presumably proceeds in an intramolecular fashion through a ‘rigid’ bicyclic transition state assembly,
which produces enantioselectivities approaching 99%. © 1999 DuPont Pharmaceuticals Company. Published by
Elsevier Science Ltd. All rights reserved.

Optically activeB-hydroxy acids are important building blocks in organic synthesis, for example, in
the syntheses of-amino acids, B-lactams? and pheromones.-Hydroxy acids are also important
subunité§ of polyketide natural products such as amphotericiht@psin® and rosaramicif. Extensive
effort in this field has resulted in fruitful synthetic methods for the synthesis of optically g&twelroxy
acids or their derivatives, utilizing, for example, aldol reacti®rend hydrogenation reactiofiswe
have been interested in developing a simple, straightforward, and generally applicable method for the
enantioselective synthesis Bfhydroxy acids. Herein, we wish to report an efficient method to directly
convertf-oxocarboxylic acids to chirgd-hydroxy carboxylic acids employing DIP-Clas the reducing
agent.
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B-Chlorodiisopinocampheylborane is a remarkably versatile reducing agent in asymmetric
synthesis%!! This reagent has been successfully applied to a number of reduction reactions, including
asymmetric reduction of ketoné$,fluoroketones? diketones* «- and B-hydroxy ketoned?® and
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ortho-substituted amino-, hydroxy- and carboxylic benzophenéha¥e have recently demonstrated
that x-oxocarboxylic acids can be reduced in a highly enantioselective manner employing DI&CI
the reducing agenrt. The reactions apparently took place in an intramolecular fashion via a neighboring
group control, involving mixed boronate intermediates after ligand exchdnéfeApplying the same
concept, we have achieved a methodology for the syntheses of enantiomerically efibizbxy
carboxylic acids using highly enantioselective DIP*Geduction offf-oxocarboxylic acids.

In a sharp contrast to the DIP-Clreduction off-keto esterg® which occurred very sluggishly and
generated low enantioselectivities, the DIP*Gkduction ofB-oxocarboxylic acids, in the presence of
triethylamine, proceeds rapidly (in 1-5 h at —=20-0°C) to afford the desired hydroxy carboxylic acids, with
high enantioselectivities (91-99% ee) and with predictable absolute configuration. As we reported earlier,
triethylamine significantly enhances the reaction taté? A plausible mechanism for this reduction
reaction may involve a ‘rigid’ bicyclic transition state assembly, as shown in Scheffid®XOne of
the enantiotopic faces of tH&carbonyl is exposed to the reductive hydrogen via a ‘locked’ transition
state. Of the two approaches, only one faSeféce, assuming —C#€OOH is >R) approach of thp-
carbonyl is favored since the R-group assumes an equatorial-like position in the six-membered ring which
minimizes steric interaction. Theeface (assuming —CHCOOH is >R) approach, on the other hand, is
less favored due to the steric interaction between the axially (or axial-like) oriented R-group with the
endemethyl of the campheyl ligand. The preferred facial approach yipiiydroxy carboxylic acids
with the desired configuration shown in Eq. 1, which is consistent with the actual configuration observed
in our results.
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Scheme 1.

As summarized in Table B-oxocarboxylic acid& in methylene chloride are treated with triethyla-
mine (1.0 equiv., —20°C, 5 min) and 1.2 equiv. of (-)-DIP*Q}20°C). Upon completion of the reaction
(-20°C to 0°C for 1-5 h), the mixture is quenched with water. After basic hydrolysis, followed by
acidic work-up, the desired optically actiehydroxy carboxylic acids are obtained in 87-92% vyield
and 91-99% ee (Table 1). The absolute configurations of the products are determined by optical rotation
through the comparison with literatufe.

In summary, we have demonstrated that frearboxylic substituent exerts a remarkable neighboring
group effect on the reduction @foxocarboxylic acids to their correspondifighydroxy carboxylic acids
employing DIP-CI" as a reducing agent. This reaction presumably proceeds through a ‘rigid’ bicyclic
transition state assembly, which leads to their enantioselective excesses approachfig 99%.
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Table 1
Synthesis of-hydroxy acids via DIP-CI reduction off-oxocarboxylic acids

Oxocarboxylic Acid Product® Yield %° ee %°
o o H O
WOH OH 87 98
88 91
OH OH
o o H O
Me M

\/\/\)ULOH \/\/\/k)LOH 88 95

o o H O
OH OH
o o OH O
)\/U\/U\ W 92 >%8
OH OH

91 >98

%
o o H O
89 97
OH OH

(a). The absolute configuration was determined by the comparision with literature data.

(b). Isolated yield.

(c). The enantiomeric excess was determined by chiral HPLC employing either Chiralcel OD or AD columns
(mobile phase: Hexane/IPA from 90/10 to 97/3) after conversion of the products to their corresponding methyl
or benzyl esters.
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